Connect

Member Research and Reports

Member Research and Reports

Molecular Pathway Known to Suppress Tumors Appears to Also Reduce Burden of Neurodegenerative Diseases, Johns Hopkins Study Finds

A molecular pathway known to suppress tumors appears to also be a major player in clearing cells of damaged proteins implicated in neurodegenerative diseases such as ALS and certain types of dementia, new research in roundworms and human cells suggests.

Johns Hopkins Bloomberg School of Public Health researchers, publishing April 2 in the journal PLOS Biology, say their findings shed new light on how a cell’s protein quality control mechanism works – and how this system could be harnessed one day to combat diseases caused by a buildup of proteins in cells. To function properly, proteins must assume their correct three-dimensional shape, a process known as protein folding. Researchers have long known that too many misfolded proteins are associated with neurotoxicity.

“In healthy cells, there is a normal process that gets rid of damaged proteins or repairs them. If that balance is perturbed, the cell will be faced with the accumulation of misfolded proteins that can lead to disease,” says study leader Jiou Wang, MD, PhD, an assistant professor in the Department of Biochemistry and Molecular Biology at the Johns Hopkins Bloomberg School of Public Health and in the Department of Neuroscience at the Johns Hopkins University School of Medicine. “We think our discovery is potentially important because it contributes to our understanding of what we might be able to change in a cell to defend against the burden of misfolded proteins. If this can be extended to humans, it might have a therapeutic value.”

To learn more: http://www.jhsph.edu/news/news-releases/2015/molecular-pathway-known-to-suppress-tumors%20Appears-to-also-reduce-burden-of-neurodegenerative-diseases.html