Connect

Faculty & Staff Honors

Faculty & Staff Honors

UMass Amherst Faculty Receives American Heart Association Grant

Dr. Edward “Ned” Debold, associate professor of kinesiology in the UMass Amherst School of Public Health and Health Sciences, recently received a three-year, $198,000 grant from the American Heart Association to support studies to uncover the molecular mechanisms of skeletal muscle fatigue. The work will advance basic understanding of muscle function and should lead to new drug therapies for individuals with fatigue that greatly limits physical function and quality of life, including the 5.7 million Americans living with chronic heart failure.

Ned_Debold

[Photo: Dr. Edward “Ned” Debold]

In individuals with chronic heart failure, the function of skeletal muscle is also compromised and is much more susceptible to fatigue. “So for affected individuals the simplest tasks around the house become extremely arduous,” Dr. Debold says. “If we can reduce the fatigue, we could enable them to live independently longer and increase activity levels, which can improve their long-term prognosis.”

Muscle fatigue is like a car engine with a bad exhaust system, unable to get rid of waste products. By-products of metabolism build up inside the muscle cells and inhibit its ability to contract. “Our understanding of muscle fatigue is currently limited by our inability to directly observe this process at the molecular level,” he says. “This project will overcome this limitation by using the latest technologies to directly visualize and characterize the process of muscle fatigue at the single-molecule level.”

He and colleagues are experts in the use of a single molecule laser trap assay, which enables them to directly observe the nanoscale motions of myosin, the protein that makes muscles contract. Dr. Debold, who built the laser trap assay at UMass Amherst, says, “We’re one of only a handful of labs in the world who have an instrument capable of making these measurements. The techniques are new, so no one has addressed the mechanisms of muscle fatigue in quite this way. It should help us to figure out why a muscle stops working during fatigue.”

To do these experiments the lab initially isolates the 20-nanometer size muscle protein myosin from skeletal muscle tissue. They will then mimic the conditions of fatigue in a test tube and directly observe the impact on myosin’s ability to generate force and motion. They will test how and why the presence of metabolites acts to slow the velocity of contraction in fatigued muscles. A second aim is to understand how these same metabolites disrupt the regulation of muscle contraction, specifically why a separate set of muscle proteins, tropomyosin and troponin, become less sensitive to molecular trigger calcium.

Dr. Debold explains, “We believe this process is disrupted during fatigue and muscles become less sensitive to calcium, the ion released in muscle cells in response to stimulation from a nerve. This means that even though your brain is telling the muscle to contract strongly, you get less force because the muscle doesn’t respond as well to the signal from the brain.”

In a later phase of the project, Dr. Debold and his colleagues will partner with pharmaceutical companies to begin to translate their new knowledge about muscle fatigue by testing several drugs that target the contractile proteins to enhance their function under fatigue like conditions. This represents a crucial first step in the translation of this knowledge from the lab bench to the patient’s bedside.

This is a highly collaborative project that also involves labs at Penn State Medical Center where Dr. Chris Yengo, an expert in myosin structure and function, will analyze the impact of the fatiguing metabolites on the internal motions in the myosin molecule. In addition, Dr. Jonathan Davis at Ohio State University, an expert in muscle regulatory protein structure and function, will help the Debold lab identify the structures and processes in troponin that cause muscle to be less responsive to activation during fatigue.